last updated 2015 September 12

Errata

in the book

The Language of Mathematics: Utilizing Math in Practice

by

Robert Laurence Baber

published by John Wiley & Co., Inc., Hoboken, New Jersey September 2011

Note: Wherever "the book", "this book", etc. appears in the errata below, "book" refers to and means the book

The Language of Mathematics: Utilizing Math in Practice.

Part 1: Logically and Semantically Significant Corrections

1. In the next to last paragraph in Section 3.4.8 near the top of page 72:

The expression should be $true \land x=x$ ($true \land x$)=x $false \lor x=x$ ($false \lor x$)=x

2. In expression [3.5.2-1] on page 80 the term $z \in \mathbb{B}$ should be $z \in \mathbb{R}$.

3. In section 5.1, Tables 5.1-1 and 5.1-2 on page 137 should be:

171DLL 5.1-1 Tuchtuces for Sums and Froudeus			
Sum	Product	Comments	
x+y = y+x	$\mathbf{x} * \mathbf{y} = \mathbf{y} * \mathbf{x}$	+ and * are commutative	
(x+y)+z = x+(y+z)	(x*y)*z = x*(y*z)	+ and * are associative	
_	x*(y+z) = (x*y)+(x*z)	+ does not distribute over *	
		* distributes over +	

TABLE 5.1-1 Identities for Sums and Products

TABLE 5.1-2	Identities for the	Logical Or and the	Logical And
--------------------	---------------------------	--------------------	-------------

Logical Or	Logical And	Comments
$(\mathbf{x} \lor \mathbf{y}) = (\mathbf{y} \lor \mathbf{x})$	$(\mathbf{x} \land \mathbf{y}) = (\mathbf{y} \land \mathbf{x})$	\vee and \wedge are commutative
$((x \lor y) \lor z) = (x \lor (y \lor z))$	$((x \land y) \land z) = (x \land (y \land z))$	\vee and \wedge are associative
$\underline{(x \lor (y \land z))} = ((x \lor y) \land (x \lor z))$	$(x \land (y \lor z)) = ((x \land y) \lor (x \land z))$	each distributes over the other

4. In section 5.2.3 near the bottom of page 144:

The expression	should be
$\neg(A \land B) = (\neg A \lor \neg B)$	$(\neg(A \land B)) = (\neg A \lor \neg B)$
$\neg(A \lor B) = (\neg A \land \neg B)$	$(\neg(A \lor B)) = (\neg A \land \neg B)$

in order to be consistent with the binding orders as defined in Table 3.4.2-1 on page 45. If the binding order of the unary function negation (\neg) were defined to be higher in the table, e.g. together with the arithmetic unary functions (+, – as signs of a number) in binding order 2, the extra parentheses in the column "should be" above would be unnecessary (but still correct).

The original expressions in the left column above are not incorrect, but they do not express directly the intended meanings, which the expressions in the right column above do express. However, the two expressions in each line are equal to each other because they are a special case of the more general identity

$$[\neg(X=Y)] = [(\neg X)=Y]$$

the truth of which can be easily shown by constructing a truth table for all Boolean values of X and Y.

5. Throughout Section 8.3 on pages 256-264, the names of the Boolean array variables GameBoardInitialized and PlayerInitialized have been abbreviated by omitting the verb. The names GameBoardIsInitialized and PlayerIsInitialized respectively would be better, thereby clearly indicating that these array variables have Boolean values.

Part 2: Minor and Insignificant Corrections

M1. In Section 1.2 in the second from last line on page 5, the period following "Section 1.1" should be deleted.

M2. In Appendix F on page 394 in the third line from the bottom, the word "is" should be "are".

Errata: The Language of Mathematics: Utilizing Math in Practice

1. In the next to last paragraph in Section 3.4.8 near the top of page 72:

The expression should be true $\land x=x$ (true $\land x$)=x false $\lor x=x$ (false $\lor x$)=x

2. In expression [3.5.2-1] on page 80 the term $z \in \mathbb{B}$ should be $z \in \mathbb{R}$.

3. In section 5.1, Tables 5.1-1 and 5.1-2 on page 137 should be:

TABLE 5.1-1 Identifies for Sums and Froducts			
Sum	Product	Comments	
x+y = y+x	x*y = y*x	+ and * are commutative	
(x+y)+z = x+(y+z)	$(\mathbf{x}*\mathbf{y})*\mathbf{z} = \mathbf{x}*(\mathbf{y}*\mathbf{z})$	+ and * are associative	
_	x*(y+z) = (x*y)+(x*z)	+ does not distribute over *	
		* distributes over +	

TARLE 5.1.1 Identities for Sums and Products

TABLE 5.1-2	Identities for	r the Logical	Or and the	Logical And

Logical Or	Logical And	Comments
$(\mathbf{x} \lor \mathbf{y}) = (\mathbf{y} \lor \mathbf{x})$	$(x \land y) = (y \land x)$	\vee and \wedge are commutative
$((x \lor y) \lor z) = (x \lor (y \lor z))$	$((x \land y) \land z) = (x \land (y \land z))$	\lor and \land are associative
$\underline{(x \lor (y \land z))} = ((x \lor y) \land (x \lor z))$	$(x \land (y \lor z)) = ((x \land y) \lor (x \land z))$	each distributes over the other

4. In section 5.2.3 near the bottom of page 144:

The expression	should be
$\neg(A \land B) = (\neg A \lor \neg B)$	$(\neg(A \land B)) = (\neg A \lor \neg B)$
$\neg(A \lor B) = (\neg A \land \neg B)$	$(\neg(A \lor B)) = (\neg A \land \neg B)$

in order to be consistent with the binding orders as defined in Table 3.4.2-1 on page 45. If the binding order of the unary function negation (\neg) were defined to be higher in the table, e.g. together with the arithmetic unary functions (+, - as signs of a number) in binding order 2, the extra parentheses in the column "should be" above would be unnecessary (but still correct).

The original expressions in the left column above are not incorrect, but they do not express directly the intended meanings, which the expressions in the right column above do express. However, the two expressions in each line are equal to each other because they are a special case of the more general identity

$$[\neg(X = Y)] = [(\neg X) = Y]$$

the truth of which can be easily shown by constructing a truth table for all Boolean values of X and Y.

5. Throughout Section 8.3 on pages 256-264, the names of the Boolean array variables GameBoardInitialized and PlayerInitialized have been abbreviated by omitting the verb. The names GameBoardIsInitialized and PlayerIsInitialized respectively would be better, thereby clearly indicating that these array variables have Boolean values.

Errata: The Language of Mathematics: Utilizing Math in Practice

1. In the next to last paragraph in Section 3.4.8 near the top of page 72:

The expression should be $true \land x=x$ ($true \land x$)=x false $\lor x=x$ (false $\lor x$)=x

2. In expression [3.5.2-1] on page 80 the term $z \in \mathbb{B}$ should be $z \in \mathbb{R}$.

3. In section 5.1, Tables 5.1-1 and 5.1-2 on page 137 should be:

TABLE 5.1-1 Identifies for Sums and Froducts			
Sum	Product	Comments	
x+y = y+x	x * y = y * x	+ and * are commutative	
(x+y)+z = x+(y+z)	(x*y)*z = x*(y*z)	+ and * are associative	

x*(y+z) = (x*y)+(x*z)

ГАВLE 5.1-1	Identities f	or Sums and	Products
I ADLE 5.1-1	Identities I	or Sums and	Products

TABLE 5.1-2 Identities for the second s	the Logical O1	r and the Logica	l And
--	----------------	------------------	-------

Logical Or	Logical And	Comments
$(\mathbf{x} \lor \mathbf{y}) = (\mathbf{y} \lor \mathbf{x})$	$(x \land y) = (y \land x)$	\vee and \wedge are commutative
$((x \lor y) \lor z) = (x \lor (y \lor z))$	$((x \land y) \land z) = (x \land (y \land z))$	\vee and \wedge are associative
$\underline{(x \lor (y \land z))} = ((x \lor y) \land (x \lor z))$	$(x \land (y \lor z)) = ((x \land y) \lor (x \land z))$	each distributes over the other

+ does **not** distribute over *

* distributes over +

4. In section 5.2.3 near the bottom of page 144:

The expression	should be
$\neg(A \land B) = (\neg A \lor \neg B)$	$(\neg(A \land B)) = (\neg A \lor \neg B)$
$\neg(A \lor B) = (\neg A \land \neg B)$	$(\neg(A \lor B)) = (\neg A \land \neg B)$

in order to be consistent with the binding orders as defined in Table 3.4.2-1 on page 45. If the binding order of the unary function negation (\neg) were defined to be higher in the table, e.g. together with the arithmetic unary functions (+, – as signs of a number) in binding order 2, the extra parentheses in the column "should be" above would be unnecessary (but still correct).

The original expressions in the left column above are not incorrect, but they do not express directly the intended meanings, which the expressions in the right column above do express. However, the two expressions in each line are equal to each other because they are a special case of the more general identity

$$[\neg (X = Y)] = [(\neg X) = Y]$$

the truth of which can be easily shown by constructing a truth table for all Boolean values of X and Y.

5. Throughout Section 8.3 on pages 256-264, the names of the Boolean array variables GameBoardInitialized and PlayerInitialized have been abbreviated by omitting the verb. The names GameBoardIsInitialized and PlayerIsInitialized respectively would be better, thereby clearly indicating that these array variables have Boolean values.